



#### Excellent Laser Technologies for the Sustainable Prosperity of Europe



# Sustainable Manufacturing with Advanced Laser Processing

Innovations for **greener**, more **efficient production lines**, supporting Europe's transition to sustainable industrial manufacturing:

- Surface Functionalization & Texturing: precision laser structuring techniques for advanced material properties;
- Minimizing Material Waste & Enabling Circular Economy: highefficiency laser processing reducing raw material usage;
- Multi-Beam and High-Speed Laser Processing: enhancing laser capabilities to increase throughput and productivity;
- Real-Time Process Monitoring & Optimization: Al-driven laser diagnostics for real-time adjustments.

| 1   | ш     | <b>L</b> |
|-----|-------|----------|
| ſ   | -     | F        |
| Ξ   |       | F        |
| Ξ   | _     | ۲.       |
| - 1 | יייוד |          |

## Next-Generation Laser Technologies for the Semiconductor Industry

Future-proofing Europe's semiconductor industry, ensuring a strong, resilient, and technologically **strong supply chain**:

- **Deep-Ultraviolet (DUV) Laser Technology:** high-energy DUV lasers for advanced chip manufacturing and inspection;
- Through-Silicon Vias (TSV) and Selective Laser Processing: laser drilling and metal deposition techniques to enhance chip interconnectivity;
- Heterogeneous Integration & Packaging: laser-based selective metal plating for next-generation electronic devices;
- Laser-Assisted Semiconductor Manufacturing: precision laser machining improving yield rates, reducing defects, and increasing energy efficiency.



## Laser Applications in Biomedicine and Biotechnology

Development of safer, more effective medical treatments, transforming healthcare and biotechnology with laser-enabled solutions:

- **Microfluidic and Lab-on-a-Chip Devices**: laser micromachining creating high-precision biochips;
- Antibacterial & Biocompatible Surfaces: development of lasertextured implants and medical tools that reduce bacterial adhesion;
- Laser-Assisted Cell & Tissue Engineering: high-precision laser techniques for controlled cell growth, wound healing, and regenerative medicine;
- **Precision Laser Surgery & Therapeutic Applications**: exploration of minimally invasive laser-based treatments.

#### Digital & 3D Printing in Laser System Development

Smarter, more adaptable, and highly efficient laser systems for seamless adoption across high-tech industries:

- **3D-Printed Laser Components**: advanced additive manufacturing to create lighter, stronger, and thermally optimized laser systems;
- Al & Digital Simulation for Laser Optimization: machine learning and real-time simulations for enhanced precision, stability, and energy efficiency;
- **Topology Optimization for Lightweight Laser Designs**: innovative structural designs reducing system weight;
- Hybrid Manufacturing for Next-Gen Lasers: subtractive and additive laser processing for more efficient, flexible laser production.

